25的倍数的特征的教学反思
身为一位优秀的老师,课堂教学是重要的工作之一,借助教学反思可以快速提升我们的教学能力,那么应当如何写教学反思呢?下面是小编收集整理的25的倍数的特征的教学反思,仅供参考,欢迎大家阅读。
2、3、5倍数的特征我设计的是一节课,但上完这节课上完后,给我最大的感受,学生对2、5的倍数的特征不难理解,对偶数和奇数的概念也容易掌握,但我由于对教材的把握不够,时间用到2、5倍数上的较多。以至于对3的倍数特征探究不到位。
好的开始等于成功了一半。课伊始,我设计了抢“30”的游戏,目的是让学生从中找到3的倍数,但我发现这个游戏没让学生部明白要求没有能提高学生的兴趣。意义不到。数学学习过程中应该是观察、发现、验证、结论等探索性与挑战性活动。首先让学生独圈出写出100以内2、5的倍数,独立观察,看看你有什么发现?学生很容易发现他们的特征,而这只是猜测,结论还需要进一步的验证。但我对这部分的处理太过于复杂零碎。以至于用的时间过多。比如说2、5倍数与其他数位的关系,着就不是本节课的重点。
小组合作,发挥团体的作用,动手实践、合作交流是学生学习数学的重要方式。我觉得我们班小组小组合作还有很多部足的地方,比如说学生的之一能力倾听能等等还需进一步训练。
今天教学了2、5倍数的特征一课,课前我们印制了百数图发给学生并布置了预习作业,让学生在百数图上分别画出2的倍数和5的倍数,分别观察2的倍数有什么特征,5的倍数有什么特征,因为这课的知识点的发现相对还是较简单的,课始让学生小组交流自己找到的数对不对,交流自己观察到的特征。全班交流时我发现大家说得都很好,找到了100以内2的倍数和5的倍数的特征,教师提问:是不是只要是2的倍数、5的倍数是否都有这样的特征呢?学生找了100以外的数进行了验证,一致得出只要是2的倍数、5的倍数都有这样的特征。接着我让男生出数让女生判断男生出的数是否是2的倍数或5的倍数并说明理由,这样的游戏也能让孩子们高兴一把,在这样的活动中也能提高学生运用知识的能力。对于奇数、偶数的概念教学还是比较容易的,因为在学生印象中已有了单数、双数的概念,我们这一课只要把学生已有的这一概念扩充到2的倍数都是偶数(双数),不是2的倍数都是奇数(单数)就可以了,有些学生还总结出个位是1、3、5、7、或9的数是奇数。但在补充习题上,让学生写出5个奇数,学生中出现只写5的倍数如:5、10、15、20、25,或根据5的倍数来写奇数如:5、15、25、35、45、55.第一种是明显错的,没有审清题意,混淆了5的额倍数与奇数的概念,第二种写法虽说是对的,但看着总有些别扭,喊学生问了问,有些是懂得,有些还是如前面一样混淆了概念。正如有些学生学了2的倍数、5的倍数的特征后,还是不会运用这些特征去判断一个数是否是2的倍数或5的倍数一样。学以致用才能体现出教与学的成功。
课的一开始,复习倍数的有关的知识,为新课学习作好铺垫。接着我设计了这样一个问题:我不用计算就能很快判断一个数是不是2或5的倍数,你们相信吗?不信就请你们任意说出一个数来考考老师。这样引入课题,不但大大地调动了学生学习积极性,而且能激起了学生探索的欲望。下面通过呈现“百数表”,让学生从表中找出2和5的倍数,并用不同的符号分别圈出,在此基础上,引导学生观察这些数,找出它们的特点。我在学生总结出2的倍数的特征后,揭示偶数和奇数的含义。总结出5的倍数特征后,紧接着又让学生继续观察,找一找2的倍数和5的倍数有没有相同的数,然后再看看这些数又有什么特点。学生很快就发现了既是2的倍数又是5的倍数的特征。从课堂效果来看,学生基本上是可以独立发现的。教学中,我也留给学生充足的时间,放手让学生自主发现,学生在体验中获取了知识,有效地提高了学习的质量。
在执教《2、5、3的倍数的特征》后,我针对本节课的教学情况进行反思。
一、跨年级学习新数学知识,知识衔接不上,不符合学生的认知规律。
虽然2、5、3的倍数的特征看起来很简单,探究的过程可能没有什么困难之处,但要内容让学生学懂,首先存在知识衔接问题,整除、倍数、因数这些概念学生都从未接触过,因此,我在课开始安排了整除、倍数、因数新概念的介绍,在我看来,这些概念比较抽象,学生一时难以掌握。
二、为了体现“容量大”,教学延堂。
备课时也参考了不少资料,大多数教学设计都是将这一内容分成两节课来学习,一节学《2、5的倍数的特征》,一节学《3的倍数的特征》,我确定用一节课教学《2、5、3的倍数的特征》,其目的是为了体现容量大,我的设计内容多,相应的学生自学、展示、巩固练习的时间和机会就压缩的比较少了。而3的倍数的特征与2、5的又完全不同,学生接受起来可能会有一定的难度,最好单独作为一课时学习。最后的环节达标测试拖堂了。
三、学生合作学习的效果较好,但展示未体现立体式。
高效课堂要充分发挥学生的主体作用,要体现学生会学,学会,在本节课上,学生合作学习的热情高,通过展示,发现学生学懂了,总结出了2、5、3的倍数的特征,在展示环节,学生讲的、板书的相互干扰,于是,我临时安排按先后顺序进行,没体现出高效课堂的“立体式”这一特点。
本节课的学习设计从学生已有的知识经验出发,创设有助于学生自主学习、合作交流的情境,使学生经历观察、归纳、类比、猜想、交流、验证、反思等数学活动,获得基本的数学知识和技能,发展思维能力,激发学习的'兴趣,增强学好数学的信心。
正确的教学观念,恰当的教学设计,使课堂生动活泼,成效显着。主要体现了以下几个优点:
一、以人为本,尊重学生,真正把学生放到学习的主体地位中
“兴趣是学习的最好动力。”学生始终保持着昂扬的学习兴趣和斗志。教师也真正做到了以人为本,尊重学生的个性发展。这就是本节课最大的成功。
二、细节讲究珠圆玉润、相得益彰
每个细节都能从整体上加以考虑,能做到衔接得体自然。例如:奇偶数组成整个自然数,在百数表中以及在辨别奇偶数以后都有提问并进行强化。又如:在学习既是2的倍数又是5的倍数这个环节,采用先找出2的倍数,再找5的倍数的方法,然后动态展示集合圈的交集既是2的倍数又是5的倍数,在不揭示“公倍数”这一概念的学习要求下,让学感知“公倍数”这一特点,为下一步学习打下良好的基础。
三、各个环节的处理详略得当、环环相扣
注重细节,但并不处处皆是面面俱到。各个环节处理既有详,又有略,环节之间还能够水到渠成,环环相扣,体现出知识之间的生成。每个环节不会显得突兀,给人一种浑然一起的感觉;每个环节之间又有相应的重点内容,显得比较紧凑,缺一不可。
本节课有以下不足之处:
一、课件用绿色代表偶数,偶数变绿色时,颜色太淡,后排看不清楚。
二、时间分配还有点欠妥,开始进入课题时间稍微长点,消耗学习时间。
三、教师语言还应该进一步简洁。
通过这节课的教学,使我认识到数学课堂教学活动是一个活泼的、主动的、丰富多彩的活动空间。
教学后感觉自己这节课的成功之处有:
一是成功的课堂引入。好的开始等于成功了一半。
本节课我是这样引入的:老师我有个秘诀——不用计算就能很快判断一个数是不是2或5的倍数,你们相信吗?不信就请你们任意说出一个数来考考老师。学生听后兴趣盎然,个个踊跃。考验老师结束后,就接着问你们想不想掌握这个秘诀呀?由此引出课题,这样不但大大地调动了学生学习积极性,而且顺其自然地把探索的问题抛给了学生,激起了学生探索的欲望。
二是紧密地联系学生的生活。
本节课我充分利用了与学生生活密切联系的生日、电话号码等,使学生明白数学来源于生活,生活即是数学。在学生认识奇数和偶数后,我安排了“请生日是奇数的同学起立”、“请生日是偶数的同学起立”的练习,以及判断自己的生日“是不是2或5的倍数”的练习,这些练习内容使枯燥的数字练习变得生动了。这即巩固了学生对奇数和偶数意义的理解。又让学生对规律的运用更加灵活了,学生非常喜欢这样的形式。真正也让学生体会到了“数学源于生活,生活即数学”。
不足之处是:在如何有效地组织学生开展探索规律时,我认为猜想可以锻炼孩子们的创新思维,但猜想必须具有一定的基础,需要因势利导。在开展探索规律时,我先组织让学生猜想秘诀是什么?由于学生缺乏猜想的依据,因此,他们的思维不够活跃,甚至有的学生在“乱猜”。这说明学生缺乏猜想的方向和思维的空间,也是教师在组织教学时需要考虑的问题。
教学过程中,在学生掌握知识的同时,注重让学生了解科学的数学研究的过程。一堂课的知识目标是很容易达成,但是要渗透数学思想方法或科学的研究方法,就提出了较高要求。在课堂上引导学生现在“百数表”中找规律,再再比100大的数中举例验证。通过“猜想——验证——结论”三个流程进行研究,最后得到正确的数学结果。经过于老师的倾心评课,以下几点问题需要思考实践:
1、对学生已经发现的的问题不需再重复,这样就可以节省出教学时间。
2、偶数的定义需要学生用自己的话解释一下。对奇数的定义理解一定要讲解透彻,为以后分辨质数打下基础。
3、0,2,5排能够被5整除的数要说说排序方法,以免丢漏数。
4、第一题的问题要求再明确一些,学生答题可能会更快。
探究2的倍数的特征时,我没有采用书本上画圈的方法,而是让学生依次写出100以内2的倍数,并且要求学生思考:怎样写才能看上去更有规律。结果,大部分学生都听节约的,密密麻麻地写了几行,只有3位同学每行写10个,而且上下依次对齐。接着让学生观察这些数的特征,一些同学说出了无关紧要的,我又提示学生观察个位上的数,发现都是0、2、4、6、8,于是就得出2的倍数的特征;对于5的倍数的特征,就简单了许多,在刚才这些2的倍数中留下5的倍数,然后在补充各位是5的数,从而学生利用刚学的知识进行迁移,得出规律。
整堂的教学还是比较顺利的,但是“想想做做”没有来得及在课上全部完成,课后想了以下,写100以内2和5的倍数应该让学生在预习的时候就完成,这样可以节省新授的时间,就能即使得到巩固练习了。
文档为doc格式